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1. Introduction

Lattice studies of QCD have, for the most part, considered the properties
of stable single-particle states. It is clear, however, that if lattice QCD is to
become a quantitative calculational tool, a study of resonances and scattering
amplitudes is crucial. For example, to calculate non-leptonic weak decay am-
plitudes such as K — a7 one must understand the interactions belween the
pions in the final state, and the possible appearance of resonances.

There are a number of problems which make such calculations difficult. In
general scattering and decay amplitudes are complex, and are thus only related
indirectly to the real quantities evaluated in Euclidean functional integrals. An
example of an explicit relationship has been given by Liischer for two-body
scattering amplitudes below the inelastic threshold [1} [2]. Liischer shows how
the finite volume dependence of the two particle energy levels in a sufficiently
targe cubic box is related to the phase shifts.! For decay amplitudes such as
A(K — ) there is, in addition, the problem of projecting against rr states of
lower energy than that required for the physical amplitude, as has been clarified
by Maiani and Testa {5]. Proposals for dealing with these problems have been
discussed by Michael [6], Wiese [7], DeGrand [8] and Liischer [9].

The restriction to stable single particle states is also due in part to the
lack of adequate computer power. Full QCD has many resonances in its spec-
trum, for example the tho meson. Present simulations, however, involve heavy
quark masses and use relatively small volumes, so that the rho is kinematically
stabilized: m, < QM, Pmin = 27/L. Large scale calculations are
possible in the quenched approximation, but here potential resonances may be
artificially stabilized by the absence of quark loops.

In this paper we calculaie the I = 2 wr scattering amplitude at threshold,
using the finite volume shift in the energy of the lightest two pion state, i.e. the

method of Refs. [1] and [4]. This is among the simplest two body calculations

! There is a long history of such studies of quantum mechanics in a spherical
volumes, e.g. Rel. [J]. In the context of lattice field theories, the leading term

in an infinite volume expansion was first given in Ref. [4].
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possible as it avoids many of the complications just mentioned In particular,
since the amplitude at threshold is real, it can be, and in fact is, directly related
to the finite volume energy shift. Furthermore, since we are studying the two
pion state of lowest energy, other states are antomatically damped in Euclidean
space. We choose the I = 2 channel since it involves quark and gluon exchanges,
but no quark annihilation, so that no essential feature of the calculation is lost
when using the quenched approximation. Finally, we study pions rather than
heavier particles, e.g. rhos, since the signal for pions is much better.

Despite these simplifications one can still learn much from the calculation.
As shown long ago by Weinberg [10], PCAC predicts the leading chiral behav-
ior of the scattering amplitude, and we can test the lattice results against this
prediction. To be more precise, we test the generalization of Weinberg’s result
appropriate to a theory with four degenerate quarks. We use the staggered
formulation of lattice fermions, for which one can derive the expected chiral be-
havior directly on the lattice, provided that one uses external pseudo-Goldstone
pions and makes some non-trivial assumptions [11]. Qur calculation thus tests
these assumptions. We can also study the breaking of the staggered flavor sym-
metry by comparing scattering of Goldstone and non-Goldstone pions. The
latter are not constrained by lattice Ward identities. Finally, we can study the
approach to the chiral limit by determining the size of the corrections from
terms higher order in m2.

Intrinsic to the calculation is the use of finite volume dependence. Finite
volume studies are likely to be a major tool in future simulations, so it is
important to see that one of the simplest calculations can be done.

It turns out. that, although the essential idea is simple, the interpretation
of the results is not straightforward. This is partly due to our use of staggered
fermions, which quadruples the number of flavors. 'The main complications are
caused, however, by the details of the wall sources we use for our propagators.
Because of this, we break the discussion up into sections in such a way that it is
clear which complications are specific to all fermion types, which to staggered

fermions in general, and which to our particular calculation.
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notation and outlining the method. In section 3 we discuss the relationship
between the two flavor and four flavor scattering amplitudes. This is a necessary
prelude to an explanation of the predictions of chiral symmetry for SU(2} and
SU4) scattering lengths, which we give in section 4.

Up to this point the discussion applies to botl, staggered and Wilson
fermions. Section 5 discusses the complications which arise from using stag-
gered fermions. Section 6 explains how we actually do the calculation, and
how we deal with the additional complications that our method introduces. In
section 7 we present our resuits, and, we end, in section 8, with our conclusions.

We devote three appendices to subjects somewhat off the main line of de-
velopment. Appendix A gives a simplified summary of Lischer’s analysis [1],
from which we extract some results needed to deal with the complications intro-
duced by staggered fermions. In appendix B, we derive the chiral behavior of
the scattering amplitudes on the lattice for staggered fermions. The derivation
also allows us to see explicitly the relationship between the finite volume energy
shift and the scattering amplitude. Finally, in appendix C we give a Lransfer
malrix interpretation of the correlator that we calculate.

The first calculation of pion scattering lengths was attempted by Guagnell;,
Marinari and Parisi [12]. They found a clear signal for the finite vohime energy
shift with both Wilson and staggered fermions, and verified the expected finite
volume dependence. The major drawback with their calculation was that they
did not evaluate all of the diagrams contributing to / = 9 pion scatlering. As
explained in section 6, this means that their results are not simply related to
any physical quantity.

A preliminary discussion of this work was given in Ref [13]. While the
mumerical results have not changed, our understanding of the theoretical issues

hiws iproved, aud we correct i the following various errors made in Ref. [13].
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2. Overview

An ideal calculation would extract scattering amplitudes from four-poie
functions in the textbook manner, i.e. by going to the pion poles and 1solating
the residue. In principle one could imagine doing the required analytic calcyla-
tion from the Euclidean space Green functions of lattice QCD, but in practice
finite statistical errors preclude this possibility Instead we settle for a simpler
calculation which obtains only the pion scattering amplitude at threshold.

The basic idea is to calculate the lowest energy of a two pion state in a
cubic box of length L with periodic boundary conditions. As the volume js
reduced from infinity, this energy differs from 2my by a factor which varies
inversely with the volume. I Ref. [1] Liischer derived the precise form of thijs

factor

4?l'£l()

E=FE_9 = -
M my L3

(1 tate (%)2) +O(/L8) . (21

Here aj is S-wave scattering length, defined in terms of the phase shift by ag =
lim,_,, 6/p. The numerical coeflicients are €1 = —2.837297 and ¢, = 6.375183.
The result (2.1) is an expansion of a general formula valid in all volumes ag long
as L > 2R, where R is the range of the interaction (2. The general formula
shows that £ is a function of the scattering length alone only up to the order
shown. The terms of O(1/L®) depend in addition on the effective range (i.e.
the O(p®) term in &(p)). At O(1/L%) one also requires the O(p®) term in é(p},
and the ! = 4 phase shift enters at O(1/L''). In this Paper we use the form
Eq. (2.1) keeping only terms up to /L5

We prefer to express the energy shift in terms of the non-relativistically

normalized scattering amplitude at threshold, 7" = —4mag/m,,
T myT myT\?
=_—f1_¢ 9 L O(L™ %) . 2.2
L3( ey +c'(47rL))+ (&7 (22)

T isrelated to the relativistically normalizeq amplitude T8 by T - —TR/(c!mE).
(In Ref. [13] the opposite sign for T was used. The present usage agrees with

the standard definition, of, for example, Ref. [1].) In appendix A we discusy
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why using 7' rather than ag simplifies the physical interpretation of 6. We also
give a heuristic explanation of the origin of the terms of order T2 and T3.
In principle it is straightforward to calculate E. We use the Euclidean

space correlator

Cax(t) = (Y OUFL )Y Oa(Ey, 1)Sa(Fs,t=0)Sa(F4,1=0)) , (2.3)
EN #

where the sources S; and the operators (J; respectively create and destroy pions
of flavor “4”. For example, to destroy a xt we use @ = dyovsu. The expectation
value indicates the usual functional integral over gauge and fermion fields, which
we do in the quenched approximation, and with « and d quarks degenerate. A
detatled description of operators and sources is given in section 6. For the
present, we need only know that both the source (at time ¢ =0) and the sink
(at t) couple to the lowest energy two pion state. This means that at large |¢|

the correlator will fall as
Cur(t) = Zuy exp(—Elt) + ..., (2.4)

(the ellipsts indicaling terms suppressed expanentially) from which we can ex-
tract £,
To obtain 6 we need m,, and this we calculate in the usual way using the

two point function
Cu(t) = (3 OUF1,)81(ZF4,1=0)) = Zy exp(—myt) + ... . (2.5)
i
It i1s most useful in practice to combine Eqs. (2.4) and (2.5)

Crr(t) _ Z‘l’t

R = =72

exp(—éEt)+ ... . (2.6)

It is from such ratios that we extract 8 F.
The method of calculation is straightforward in principle, not differing
essentially from the calculation of hadron masses. One must only take care to

project onto a two pion state of definite isospin, as discussed in the following
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section. The only practical concern is the possibility of contamination in i
from excited states. It turns out, in our calculations, that 16Etmax] << 1 (tpax
being the maximum time separation used to extract the result}, so Lhat we can

expand the exponential in R

R(t) =

ZZ’; (1-8Ejt|+ Ot + ... (2.7)

To extract the linear term proportional to 8K one must work in a regime where
¢ 1s small enough that t8E < 1, and at the same time ¢ is large enough that the
contributions of excited states are exponentially suppressed. For the numerical
data we discuss below, there is indeed such a range of { where the linear term
suffices. Were it not for additional complications related to the use of stag-
gered fermions, the simultaneous extraction of §E and 7, /2% would then be

straightforward.?

3. Flavor symmetries

The four possible types of contractions contributing to Cy, are shown in
Fig. 1. We refer to the contractions respectively as the “direct” or “gluon ex-
change” diagram (Fig. la), the “crossed” or “quark exchange” diagram (Fig.
1b), “single annihilation” (Fig. 1c), and “double annihilation” or “glueball”
(Fig. 1d). Since the operators O; and @, in Eq. (2.3) are summed over
all space, there is no distinction between “quark exchange” and “anti-quark
exchange” diagrams. Similarly, charge conjugation does not change the ampli-
tudes, so that the direction of the arrows is unimportant. Thus all contractions
can be expressed in terms of the correlators represented by these four diagrams.
We refer to the contributions of each diagram to the ratio R(t) as D(t), C(1),
A(t) and G(t) (for glueball) respectively.

We first consider the scattering of physical pions in QCD. Two pions in

an S-wave can have isospin 0 or 2, and we label the corresponding amplitudes

2 This point was misunderstood in Ref. (13}, where it was suggested, incor-
rectly, that independent knowledge of Z,, /22 is necessary. We thank Claude
Bernard for pointing this out.



at threshold T; and 13, respectively. To obtain 7} we study »t 79 scatlering;
the I = | part of this combination does not contribute since we yse a spatially
symmetric operator to create the pair. Only the direct and crossed contractions
contribute, with the latter coming in with a relative minug sign because of Fermj

statistics.® Thus we have
Ra(t) = D(1) - c(ty, 3.1)

where the subscript on R denotes the isospin. On the other hand, extracting

the I = 0 amplitude requires calculating all four diagrams
Ro(t) = D(t) + LC() — 34() + 2Gq) . (3.2)

We consider only Rs in this Paper, since the direct and crossed diagrams
require no more quark Propagators than spectrum calculations, and can thuys
be done with present resources. To evaluate the annihilation diagrams, by
contrast, would require many more propagator calculations.

Our calculation is dope in the quenched approximation, i.e. we do not
include internal quark loops. For the single and double annihilation diagrams,
quark loops are needed to make the scattering amplitudes unitary. In Euclidean
space the lack of unitarity implies that Ro(t) will not behave as a pure exponen-
tial for long times, instead growing linearly with ¢. This is shown in an explicit
example in appendix B. This problem does not, however, afflict the direct and
crossed diagrams which are needed for Ry;. OFf course the results obtained in
the quenched approximation will differ from those in the fi]] theory, but for the
direct and crossed diagrams no essential part of the physics is lost by using the
quenched approximation.

Since we can calculate D(t} and C(t) separately, we can form D 4 € as
wellas Ry = D— O It is thus interesting to determine the physical quantity

corresponding to D + . It turns out that to do this one has (o consider a

* We find it convenient to keep this sign explicit and have the lines in Fig.
I correspond to the quark propagators we actually caleulate.

i

theory with four degenerate flavors. We give a brief discussion of the Lwo-pion
correlators in such g theory.
Four flavors is the minimum number allowing one to separate each of the

diagrams in Fig. 1. For example, labeling the flavors 4, d, 5 and ¢, the choices

D Oy =tysd, @, = 51se, 83 = dvysu, S1=12ss
C O =%ysd, O, = 515¢, Sa=Tru, S = dyss (33)
A: O; = Uysd, Oy = 3‘750, 83 = Fysu, S4 = Tyss J
G

O =9yd, 0, = dysu, S = 5ys¢, Sy = Tygs

for the operators in Eq. (2.3) yield, respectively, Figs. la, b, ¢ and d (with Figs.
1b and lc being produced with a minus sign from Fermi statisties). The SU(4)
representations that contribute to these correlators are those which appear in
the product of two 15-dimensional adjoints. For S-wave scattering we need only

the symmetric part;

(15 X 15)gymm = 1+ 15 + 20 + 84, (3.4)

These two representations are distinguished by their Symmetry under quark {or
antiquark) interchange: the 84 ig symmetric while the 20 i antisymmetric.
Including the sign from Fermj statistics, this means that R(84) = D — C while
R(20) =D+ ¢,

We conclude that ) — ¢ gives us the scattering amplitude both for the
I =2 representation jn SU(2) and the 84 fepresentation in SU(4), while D + ¢
corresponds to the 20 representation of SU(4). In the quenched approximation,
when the ensemble of gauge configurations is independent of the number of
flavors, this implies that Ty = T(84). Of course, if one includes quark loops,
the gauge configurations for the two theories wili differ, and 73 and 1(84)

need not be the same. Neverl.heless, as we discuss in the next section, chiral
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symmetry implies a lowest order relationship between 74 and T(84) even when
we include quark loops.

For staggered fermions we need to cxtend this discussion to the flavor
group SU/(16). This is straightforward for all flavor groups SU(N > 4). The
decomposition of two adjoints is as in Eq. (3.4), i.e. a singlet, an adjoint,
and the generalizations of the 84 and 20. The latter two representations are
distinguished by their symmetry under quark exchange, and we refer to them
as 5 and A, respectively. In general their dimensions are (N -1)NYN + 3)/4
and (N — 3)N?(N + 1)/4 respectively. In the quenched approximation, the
scatlering amplitudes for all N > 4 are related to those discussed above by
T(S) = Ty and T(A) = T(20).

4. Chiral predictions

Using SU(2)y x SU(2)r chiral symmetry, the amplitude 75 can be ex-

pressed as .
T = i + O(m? In(m?)) , (4.1)

in the normalization in which f, = 93 MeV. The leading term, which is more

familiar as Tf' = —m2/f2 4 ..., was given long ago by Weinberg [10]. The
fact that 73 is positive implies a repulsive interaction between the two ptons.
The non-leading terms (which include non-analytic chiral logarithms) have been
classified by Gasser and Leutwyler, and can be partly, though not completely,
written in terms of other physical quantities [14]. Tn a three flavor theory there
are also non-leading terms proportional to O(m¥ In(mg)).

As discussed in the previous section, we can also calculate the scattering
amplitudes for both S and A representations for theories with SU(N >4) flavor
symmetry, in the quenched approximation. Thus it is interesting to derive the
expected chiral behavior of these amplitudes. This is a straightforward exercise
in chiral perturbation theory. At leading order the chiral Lagrangian is, in
Euclidean space,

fr(NY?
2

L= —f’%&r)_?’n (ouzast) + T (M(Z + =h) (4.2)

where X = exp(2ir, T,/ f-(N)) in terms of the N2_1 pseudo-Goldstone bosons
fields x,. The group generators T, are normalized to Tr(T, Ty) = %6,,;,,
M is the quark mass matrix, in terms of which the pion mass matrix is
(m2)a = 4pTe(MT,Ty). The only N dependence enters implicitly through
fx(N), which is the physical parameter appropriate to a theory with an SU(N)
flavor symmetry. The scattering amplitudes are obtained from the 7+ term in
£, and we find

T(8) = m + O(mi In(m?)) ,

T(A) = + O(m? In(m?)) (4.3)

1
4f,(Ny?
= —T(8) + O(m? In(m?)) .
Comparing this with Eq. (4.1) we see that the expressions for T, and T(S)
coincide at leading order in m2. This is consistent with the result, of the previous
section that 75 = T(S) in the quenched approximation. This is because, in the
quenched approximation, f,(N) is independent of N.

The leading order result T(A) = —T(S) shows that the attraction between
pions in the representation A has the same strength as the repulsion in repre-
sentation 8. The reason for this is instructive. At leading order in the chiral
expansion only tree diagrams with four-pion vertices contribute. There are var-
ious ways in which the flavor indices can be contracted, and Fig. 1 shows all
the possibilities. The crucial observation is that the chiral Lagrangian (4.2)
only contains terms with a single trace over flavor indices. Thus the direct
and double-annihilation diagrams do not appear at leading order, for they have
two Havor traces. Only the crossed and single-annihilation diagrams contribute.
Since T'(8) is calculated from 1 — €, and T(A) from D + C, if D vanishes we
have T(S) = —T(A).

The higher order terms in Eqs. (4.3) come from O(p*, Mp?, M?) terms in
the chiral Lagrangian, and from loop diagrams. Some of the contributions have
two flavor traces [15], so that D does not vanish at non-leading order. This
means that T(A) and T(S) will differ by terms of O(n? In(m?)). Similarly, the
higher order terms depend on the number of flavors, so f2T5 and [ (NYT(S)

will also differ at O(m2 In{m2)) in the full theories.
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The constraints of chiral symmetry are shown most clearly by the “gluon-
exchange” and “quark-exchange” amplitudes. These result, respectively, from
Figs. 1a and 1b

Ty = 3 (T(S)+ T(A)) = 04 O(m? In(m3))
) 4.4)
T, = 3 (T(S) - T(A)) = é; +O(my in(m})) . (

These are the amplitudes most directly related to the individual correlators we
calculate on the lattice. i

As we have seen, chiral symmetry places strong constraints on pion scatter-
ting amplitudes. In particular, the relativistically normalized amplitudes must
vanish like m? at threshold, or equivalently, the non-relativistically normalized
amplitudes must tend to a constant in the chiral limit. If one uses Wilson
fermions on the lattice, however, chiral syminetry is broken at finite lattice
spacing a. Thus the relativistically normalized amplitude will not vanish in the
chiral limit, and Typ will diverge proportional to a/m2 [16]. This makes it
difficult to extract the continuum amplitudes.

With staggered fermions, on the other hand, as long as one considers the
scattering of the lattice pseudo-Goldstone pions, there are lattice Ward identi-
ties which constrain the lattice amplitudes. In fact, with certajn assumptions
concerning the smoothness of the amplitudes, and assuming that the pions dom-
inate correlation functions for sufficiently small Mg, one can derive Eq. (4.3)
on the lattice. The derivation, which extends the work of Ref. [11], is given in
appendix B. It is valid in the quenched approximation as well ag with dynamical
quarks. It gives no information, however, on the O(m? In{m2)) terms.

Staggered fermion scattering amplitudeg involving non-Goldstone pions are
not directly constrained by Ward identities. In general, these amplitudes should
diverge in the chiral Kmit Just as they do with Wilson fermions. The only
difference is that the divergence should have a smaller coefficient: a2/m? for
staggered fermions rather thap a/m?. Thus a comparison of amplitudes for
Goldstone and non-Goldstone pions provides a good test of staggered-flavar

symmetry restoration.

5. Staggered complications

For Wilson fermions this completes Lhe description of the calculation and
the theoretical prelude. For staggered fermions there are, however, two luriher
theoretical issues to be resolved. The first is that staggered fermions represent
N; =4 degenerate flavors in the continuum limit, rather than a single fermion,
The second is that the associated SU(Ny) Symmetry is broken at finite lattice
spacing.

To resolve the problem of the extra flavors, we use essentially the same
method as in calculations of weak matrix elements [11][17). This approach is
far from unique, but has the advantage of making maximal use of the softly
broken axial symmetry, which is present wiih staggered fertnions even for finjte
lattice spacing. Only for this method is the resulting scattering amplitude
constrained by Ward ldentities to have the same chiral limit as QCD 4

The method consists of three parts. The first is to introduce a separate
staggered fermion field for each continuum quark. We use the notation of
Ref. [19] and collect each staggered field into a matrix Qaa, where a is the
usual spinor index, while g — 1,4 is the staggered-flavor index. The upper
case letlers are a reminder that the field represents four flavors. Since four
continuum quarks are required to define the correlators (see section 3), we need
four staggered species, which we call {/ v D, S, and C. Thus our lattice theory
has an SU(4Ny) symmetry in the continuum limit, and s clearly different from
the theory we want to study.

The second part of the method concerns the transcription of continuum
pions onto the lattice. When we construct the correlators of F 1g. 1, we must
choose the staggered-flavor of the externa) pions. The pions are created by
operators such as Tr(T7~s DT,), where the flavor is determined by Ty, which is
one of the 16 Kuclidean gamma matrices.®> The rule js to always use the lattice

pseudo-Goldstone pions, i.e. those having the flavor matrix T5. This is the pion

1 A review discussing these points in more detail is Ref. [18].
5 More precisely, if 5 = (g,, N2, M3, 11) is a vector of integers defined niodulo

2, then T, = 1Y ya 9l The Tu are hermitian, and g = Y1 Y¥2YaYa.
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whose mass vanishes in the limit rn — ). We refer to pions having one of the
1% other staggered-flavors as non-Goldstone pions.

The final step is to remove overall factors of Ny in such a way that, in the
continuum limit, the correlators we calculate are the same as those of QCD.
In the problem at hand, we calculate Figs. la and 1b with external pions
having flavor 75. This means that the diagrams of Fig. 1 differ from their QCD
counterparts by staggered-flavor factors. The direct diagram Fig. la has two
flavor traces, and thus a flavor factor of [Tr(T2 )]2 = Nfz. The crossed diagram
Fig. 1b has a single flavor trace, so its flavor factor is Tr(T3) = Ny. To obtain
results applicable to QCD we must divide by these factors. In the ratio R{1),
the denominator C? (Eq. (2.5)) has a flavor factor of N}, since each pion
propagator has a single flavor trace, Tr(73) = Ng. Thus the staggered-flavor

factors cancel in D(t), while C(t) must be corrected
C(t) = NyCiragg(l) - (5.1)

We use this definition in all of the following. It is for this definition of C(t) that
the analysis of appendix B applies.

This discussion does not address the extra factors of N 't in dynamical quark
loops. What we have in mind is taking the appropriate root of the staggered
fermion determinant so that, in the continuem limit, the same number of flavors
flow around internal quark loops as in QCD. Then, at the level of diagrams, all
contributions are exactly as in QCD.

A possible concern with this diagrammatic analysis is that the quantity we
calculate, Ry(t} = Dystagg — NyCpragg, cannot be written as the correlator of a
single product of operators, unlike the correlator we are aiming for, Cy, (Eq.
(2.3)). This is because we have multiplied different contractions by different
factors. Thus H5(t) does not have a simple transfer matrix interpretation. We
address this concern in appendix C.

We now turn to the second complication due to staggered fermions, that
due to the breaking of the flavor symmetry at finite lattice spacing. At first
sight, it would seem that this would stmply introduce small corrections into the

formulae used to cxtract the scatiering amplitudes. These corrections would

13

presumably be proportional to a? [20]. 1t 15 true that we expect Lhe scattering
amplitude T' to only receive small O(a?) corrections, but we do not direcily
calculate this amplitude. Instead, we calculate T indirectly from the energy
shift 6, and it turns out that some of the flavor breaking corrections to the
relation between T' and 6E are enhanced.

To see how these enhancements occur, we need to understand some details

of the derivation of Eqs. (2.2) and (2.6), which we summarize as

T T T?
o~ 2,2 _
R(t) ~ Z(1 - 6E|t| + L6E%%) | §E = 7 (1+alz+a2ﬁ) . (5.2)

R(t) is the quantity we actually calculate in order to extract T. A heuristic
summary of the derivation is given in appendix A. The derivation proceeds by
comparing the expansions of R(t), 6E and T in powers of the bare interaction.
In particular, in the Euclidean evolution operator R(t), the interaction causes
the two pion system to jump between states in which the pions have different
relative momenta, as shown in Eq. (A.9). Consequently, even if we project onto
the state with zero relative momentum at initial and final times, the states at
intermediate time can have either zero relative mormentum (and thus be “on-
shell” ) or non-zero relative momentum (“off-shell”). The interaction also mixes
pairs of Goldstone pions with pairs of non-Goldstone pions. This means that
pions with all 16 staggered-flavors appear at intermediate times, even if we
project onto Goldstone pions at the initial and final times. As discussed in the
appendix, Eq. (5.2) holds only when all pions are degenerate, and interact with
equal strength.

At finite lattice spacing the pions are not degenecrate, for the symmetry is
broken down to a discrete subgrounp' {21]. For example, the 16 pions created
by the operators 'I‘r(l_n"r5DT,,), where T, labels the possible gamma matrices,
now fall into four 3-d and four 1-d representations, each having masses differing
by O(a?). In the chiral limit, only the Goldstone pion (T = Ts) is massless,
while at finite mass the Goldstone is lighter than the other pions. We denote a
typical mass difference by ém,.

The lack of degeneracy affects the on-shell intermnediate states most

severely. As discussed in appendix A, these states contribute in three ways
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to Eq. (5.2). First, they lead to the terms of quadratic and higher order in ¢.
One can think of the ¢ term as corresponding to two pions Propagating freely
except for two all-orders interactions of strength 6E. To obtain the factor of
%t"’, the state intermediate between the two interactions must be on-shell, i.e.
degenerate with the external state of two Goldstone pions. If (he intermedi-
ate state has an energy greater by 2ém,, there will be an extra exponential

suppression, and ¢ will be replaced by roughly

¢ ty i
~2mg(t~13) —28m .,
/ﬂ dtlfo diy ¢~ 2melta=a) fay? (€77 = (1 - 26my 1))

~ (- 26m,t+ . )

(5.3)

We see here that the flavor breaking ém, is enhanced by a factor of £. In our
calculations 26m, 0.1 and we fit to times ¢ 6—20, so that 26m, 1 ~ 1. Thus
it is not legitimate to expand the exponential in the first line of Eq. (5.3), and
the expected functional form js substantially changed from #2. If one were to
insist on fitting to t?, the resulting coefficient would be substantially less than
SE?.

The second contribution of on-shell intermediate states is to terms propor-
tional to ¢79/L5 i R(t), i.e. tothe 1/L? corrections to 6E. Here also the flavor
breaking is enhanced by factors of ¢, and the functional form will be roughly
(exp(-26m,t)—l)/(26m,) instead of linear in ¢. Thus the value of 8F extracted
from a linear fit will be incorrect at the level of 1 /L? corrections.

The final contribution of on-shell intermediate states is to the parts of Z
proportional to 1/L2. An error here also affects the 1/L? corrections to 65

The effect of flavor breaking is less important for off-shell intermediate
states. This is because the splitting between the discrete energies aliowed by

the finite box is larger than dm,. The condition for this is

20\ 2
m? + (—LI) —my > bm, , (5.4)

and this is satisfied in our calculations. Clearly for large enough L, at fixed

a, this condition will not be satisfied. In this case, the derivation of tje /L1
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term in 8K is not valid, because the lower limit on the momentum sums for
non-Goldstone off-shell intermediate states becomes ~ dm, and not ~ /L. I
this limit, only the leading order tertn in §£ can be used.

In summary, for our calculation we can use Eq. (5.2) to extract T as long
we work in a regime where (1) only the constant and linear terms in f are needed
to describe R(t); and (i) L is large enough that we need not rely on the 1/
term in 8K. The resulting T should have errors of O(a?) and of O(1/L%).

We stress that the failure of the 1/L5 terms in Eq. (5.2) is due to the fact
that we are trying to apply Liischer’s formula to a situation for which it was
not derived. The formula applies to finite volume energy shifts, are we are not
calculating such a shify. Instead we are calculating the coefficient of the term
linear in ¢. In fact, if we did calculate the long time exponential behavior of the
correlator, we could use Liischer’s formula to extract a lattice Goldstone pion
scattering amplitude. It is clear from the above analysis, however, that it would
have no relation with the continuum amplitude we are seeking to extract. In
fact, it is probable that it would have the opposite sign from the continuum

amplitude, since the lightest state would likely be lighter than 2m, .,

6. Method of calculation

Goldstone pions. One is forced to rely on the terms in f(1) constant and linear
in ¢, since quadratic and higher order terms are affected by staggered-flavor
breaking. Any coupling of the initial and final operators to non-Goldstone pions
would contaminate the linear lerm itself, and thus complicate the analysis. It
turns out that with the propagators available from spectrum calculations, such
contamination is unavoidable.

The problem stems from the form of the operators with which we create
the two pion state in the correlator Crx. These are denoted 83 and Sy in
Eq. (23). Ideally, we would like to uge St =3, O(Z,1), where () is a locai
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pton operator, but this is not practical as it would require propagators starting
from all points on a timeslice. Instead, in our calculation 8 is the product of a

wall-source for the quark with a wall-source for the antiquark:
S(t) =Y A@HX(E t)a Y AGX )a - (6.1)
& ¥

Here y is the one-component staggered fermion, with color index a, and we have
suppressed the flavor indices. The phases A and A’ determine the staggered-
flavor of the source, and will be discussed shortly. This source has the advantage
of coupling only to zero momentum pions, and thus works well for pion two-
point functions. The problem arises when there are two such sources on a single
timeslice, for then there are contributions in which the quarks and antiquarks
bind together to form pions in the opposite way to that we impose by the
contraction of color indices. These “Fierz” contributions are not suppressed by
powers of 1/L, and couple to pairs of both Goldstone and non-Goldstone pions.

The effect of these contributions is that the lattice correlator which one
might think to be the direct diagram actually contains a component of the
crossed diagram, and vice versa. This is not important for Wilson fermions
as long as one calculates (1} F C(t}, for these combinations project the Fierz
contributions onto the desired flavor. The only effect is that the overall constant
Zux [Z] may differ from unity by terms of O(1) rather than O(1/L?). The Fierz
contributions are, however, a problem with staggered fermions. This is because,
as mentioned above, they introduce large flavor breaking into the linear terms
in f2(t). In addition, it turns out with our wall sources that the combinations
D F C do not project onto representations of the SU(4N;) symmetry group,
even in the contimium limit.

There are also Fierz terms from the operators which destroy the two pions.
Here, however, the operator used in the calculation does consist of the product
of two § = 0 pions instead of quark sources. This means that the Fierz terms
are small, since they require the two particles to overlap. Naively these terms
are O(1/L?), though, like the wavefunction renormalization, they are likely to

be in fact of O(1/L?). If so, they will affect the scattering amplitudes at the
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level of 1/L? corrections. Since this is the level at which Ue amphitydes ar
already uncertain, these Fierz contributions from the final operalors can be
ignored.

To understand how we address the problem of Fierz contributions we must
first explain our sources in more detail. We follow the notation of Ref. (22},
which also contains a more complete discussion of our wall sources. The phases
in Eq. (6.1) depend only on the values of Z modulo 2, i.e., if we write & = 25 +1j,
then A(F) = A(7j). We use two types of source, q and o. Choosing £ = 0 to

simplify the notation, these are

W= x(Fas  To= 3 (-1)FANR(E),
&

4

(6.2)
04 = Z(_l)n:+ny+n, (D ; Ba = ZY(E)“ ]
Ed >l

These sources are made gauge invariant by fixing the source timeslice to
Coulomb gauge. Combining these sources we can create four different pions:
the Goldstone pion 7 {with flavor T5) and the non-Goldstones 75, ¥ and 7,

with flavor 7375, T4T5 and TyTyTs respectively
S(m) = " Tqa +a0q
S(m3) =Y Fuda — Ba04
S(F) =Y Tava + Tada &)
a

S(F3) = Y Ta0u — Bala -

In Cyx we place two such operators on a single timeslice, i.e. $(r)S(x). We
want to rewrite this product operator in a basis in which, say, the quarks from

the two operators are interchanged. To do this we rearrange the colors using

8
Savbea = §8aaber + 23 TigTly . (6.4)
i=l

i&



Thus the color Fierz gives a factor of %.5 We also need the staggered-flavor

Fierz rearrangement formula, and it straightforward to show that
S)S(r) — 3 (S(x}S(7) + S(ma)S(rs) F+S(@)S(F) — S(73)8(7s)) ,  (6.5)

where we have omitted the color indjces. Thus the source which naively creates
two Goldstone pions, also couples to mx, w373, T7 and —#a73 with the quarks
and antiquarks combined in the “wrong” way. The relative strength of these

3 from the staggered-flavor

couplings is é: % from the color Fierz multiplied by
Fierz. Note that there is no possibility of double counting here as each of the
staggered fermions has a different flavor under the overall SU7(4) symmetry, so
the pions resulting from “right” and “wrong” Xx combinations have different
flavors.

The Fierz contributions force us to face head on the problem of staggered-
flavor symmetry breaking. To do this, it is simplest to consider D(t) and C(t)
separately. We break down both into a part without Fierz terms, and the
contribution from Fierz terms, eg. D = )y + DFierz. We know from the
previous sections how Dy and Cy are related to the scaltering amplitudes. For
Dyery and Cprop we use the understanding developed in appendix A to take out
explicitly all the terms in which corrections due to flavor symmetry breaking are
enhanced. The Temaining corrections are of the same size as the uncertainties
in the formulae for Dy and Ca, i.e. of O(a?) and O(1/L%).

The expressions for Dy and Co can be obtained by combining Egs. (2.2),
(2.7) and (4.4)

T, em, (T2 +T?)
L3 4x L

Ty, aamg (27,T,)
v _ 2 g 4“9 9tq
Co(t) = O(1/1%) +1 (L"’ ey e

Do(t) =1 +0(1/L2)—t( +0(1/L5)) + O(t?)
(6.6)

+ 0(1/L5)) + O(1?) .

§ We ignore the part of the rearranged operator consisting of two color octet
pions, for neither operator couples to physical states. There may be some
coupling of the two octet operator to two physical pions, but this involves an
overlap factor which contributes to 6L at O(1/L%), the level at which Eq. (2.2)
is unreliable.

We have assumed that Zex[2E—1 = O 1/L%) for both the S and A representa-
tions. This is true for local zero-moinentuin sources (as discussed in appendix
A), but 15 an assumption, albeit reasonable, for our wall sources. To give us
some idea of how good this assumption is, we multiply both 1) and ¢ by a
factor of Z in our fits. A consistency check is then that Z comes out to be close
to unity.

We now consider the Fierz contribution to D). In this contribution, the
initial pions produced by the Fierzed source must interact by quark exchange
in order to couple to the final operators. Asshown in Eq. (6.5), the initial pions
can be either Goldstone pions or non-Goldstone pions. If they are Goldstone
pions, the Fierz term is just like the correlator Gy in Eq. (6.6). Aside from
small corrections, Cp is proportional to ¢, and one can think of this as coming
from two pions propagating freely except for an interaction which can take place
at any time. For initial non-Goldstone ptons, the physical picture is similar:
the non-Goldstone pair propagates for a time ¢ and then scatters into the
Goldstone pair, which propagates for the remaining time. We must take into
account, however, the difference between the Goldstone and non-Goldstone pion

masses. We do this with the replacement

: .
t=3"1— H(t) = > exp(~26m,1") . (6.7)
t'=1 =1
Note that when 6m, — 0, H(t) — t. As Eq. (6.5) shows, the Fierzed source
produces three types of non-Goldstone pions. We use a common ém, for all
three, since, within our errors, they are degenerate [22].

As discussed above, the source produces each of these pion pairs with an
ovetall factor of é. ‘This will receive corrections at O(1/L?%), and $0, in our fits,
we parameterize the strength of the Fierz amplitude by F. A consistency check
is then that we find F a é.

We also need to calculate the sign of the contributions of the four different
pion pairs. This is a combination of the sign {rotu the flavor Fierz transforiation
given in Eq. (6.5), and the staggered-flavor factor multiplying the scattering
amplitude. For initial pions of flavor T, , the latter factor is 'l‘r('I'E,’I';,Y},’I;, VW Ng.
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For x, my and 7 pairs this is +1, while for 73 pairs it is —1. These signs cancel
those in kq. (6.5), with the result that all four pien pairs contribute with the
same sigu.

We must also account for the fact that Cy(t) contains an overall factor of
N; which is included by hand, Eq. (5.1). The Fierz contributions to D{t) do
not contain this factor, a;ld thus, when related to Co(t), must be multiplied by

1/N;. Putting all this Logether, we have

F t4+ 3H(
Drierz(t) &= —Co(t)}(1 + 3H(1)/1) = Fw . (6.8)
Ny L
Here we have introduced the notation
NiQ =T, - 2T, Tyeymy J(47L) + O(1/12) . (6.9)

The analysis is simpler for C(t). The Goldstone pion pair produced by the
Fierz rearranged wall sources can propagate without scattering, or undergoing
a gluon exchange, before being destroyed. The scattering of the non-Goldstone
pairs into a Goldstone pair by gluon exchange vanishes in the continuum limit,

since the staggered-flavor traces vanish. Ignore this small contribution

Crierz{t) = Ny FDo(f) = Ny F(1 — tG/ L")

(6.10)
G =T, — (T + T?)eym, [(47L) + O(1/L?) .

The factor of Ny is the overall factor included by hand in the definition of C.
In addition to the correlators in which we both create and destroy the
fields with Goldstone pion operators, we also calculate with sources and/or
sinks creating a mam3 pair. This allows us to test our parameterizations of the
Fierz terms, and to study flavor symmetry breaking in the scattering amplitude.

The correlators we calculate are (cf. Eq. {2.3))
ar— wr o {w()a(t)S(n)S (7)) /{m(1)S(x))?
Tr — mgmy s (ma(t)ma(OS(m)S(x))/{n()S(7))*
azmg = aw s (v()n()S(m3)S(ma))/ (n(t)S(m))*
m3my — Aamy 1 (ma(t)wa()S(ma)S(73))/(ma(t)S(ma))? .

(6.11)
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For each of these, we calcutate both the direct and crossed correlators. Not:ce
that our notation has the flavor of the wall sources appearing first (to the left
of the arrow).

Extending the analysis given above, we find, using the flavor Fierz
S(m3)S(ms) — 3 (S(m)S(7) + S(ma)S(m3) — S(FIS(F) + S(73)S(F3)) | (6.12)

that (we include the 77 — 7w formulae for completeness)

r—aw: D) = Z(1 —tG/L*) + F(t + 3H(1))Q/L?
Catage(l) = ZtQ/L? + F(1 —tG/L?)
am — mamy: D(t) = F (—te™ 2™ 4 H(1)) Q/L°
Catagg(t) = ZH(Q/L? + Fe=¥™-4(1 —1G/L?)

(6.13)
mamg — 7w D(f) = F(t - H(t))Q/L?
Coingg(l) = ZH()Q/L? + F(1 —1G/L?)
Tamz — mamy . D(t) = Z(1 —tG/L?) + F(H'(t) + 36)Q/L?
Catagglt) = Z1Q/L? + F(1 —tG/L%) ,
where )
H(t) =) e?met’ (6.14)

=1

We express the resuits in terms of Cytagg = C/Ny, since this is the correlator
we actually calculate.

These are the equations with which we compare our numerical results.
We do so in the region where t is both large enough that contributions from
excited states {which are not included in the equations) have died away, and
small enough that terms quadratic in ¢ are small. From this comparison we can
extract G and @, which, according to Egs. (6.9) and (6.10), should reach finite
limits as I — oo, with known 1/L corrections.

"Two of the correlators involving 73 are particularly interesting. The first, is
C(t : mam3 — 7}, which differs from C(¢ : 77 — nw) only by the replacement

t — H(t) in the first term. Comparison of these two correlators is thus a good
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TABLE 1. Lattices and propagators used in numerical calculations.

[ 3 a Y (GeV) | Size Sample * m,

571 1.0 16% x 32| 12415 0.005, 0.01, 0.015

5.7 1.0 163x 32| 13 0.03, 0.06, 0.09

60| 20 16 x 40| 18+13 0.01,0.02, 003 |
601 20 28 xa0] 13 0.01,0.02, 0.03

* The number of lattices in each independent stream is given,
1

way of testing the form of H(t). Second, C(t : mamy — #37m3) should be the
same as C({ : 77 — xx1). That this s 80 tests the size of O(a?) corrections,
which have been ignored in this parameterization .

We close this section with a note on the calculation using Wilson fermions.
The first two lines of Eq. (6.13) apply to Wilson fermions if one sets Ny =1
and H(t) = 0. One sees explicitly that if one forms D ¥ C, the Z and F' terms
combine into the leading terms of pure exponentials. It is also clear, however,
that if one only has a caleulation of D(t), and does not know F, one cannot
extract Ty = T, — T,. This is the case in the calculation of Ref. [12], where the

use of a smeared source prohibits estimation of F

7. Numerical results

We calculate the correlators of Eq. (6.13) on the quenched lattices and
using the quark masses listed in Table 1. We also give the nominal values of
a! which we use to convert to physical units when needed. The two lattices at
3 = 6 are the most important for our study, as they allow a direct calculation of
any finite volume dependence. The quark masses are moderately small, roughly
1.5m,, m, and 0.5m,, where m, is the physical strange quark mass [22]. Unlike
the lattices at g = 6, which are on the edge of ihe scaling region, those at
2 = 5.7 are deﬁnitely outside this region, Nevertheless, the lattices are of
interest because, in addition to quarks of mass similar to those at g = 6, we

"

also use considerably smaller quark masses. These are roughly 671, 471 and 27,
where 10 = (m, + my)/2, m, and my being the physical up and down quark

EN assey.
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Complete detaiis of the lattice generation and

given in Ref, [22],

Propagator calculations are

and we mention only the pertinent features. All propagators

are calculated with Dirichlet boundary conditions in the time direction, with

the wall sources Placed on one of the boundary timeslices. ‘The propagators thys

fall off over the entire time extent of the lattice, distorted only by boundary

reflections. The “Joca)” pion operators (O and Oy in Eq. (2.3)) are actually

smeared out over a 24 hypercube. In the notation of Ref. [22], the operator for

the Goldstone 7 is

We prefer these to

Y475 @75, while that for the non-Goldstone =5 is 15737475,

single tirneslice operators, as they couple less strongly Lo the

excited states in their respeclive channels [23].

In Ref. [22] we studied the finite size de
decay constants on the lattices at g
loops and from glueball exchange, ¢
exp(—mg L), respectively,
falling corrections must be
fall as powers of 1/L. We
smailer than the statistical errors. For my
other quantities they are somewhat larger.

large enough to attempt a calculation of the

pendence of pion masses and
= 6. Such dependence comes from chiral
he corrections falling as exp(—my L) and
Mg being the glueball mass. Thege exponentially
negligible if we are to extract finite size effects which
found that finite size effects in My, fr and My, are
these errors are ~ 2%, while for the

We conclude that the lattices are

scattering amplitude,

TABLE 2. Parameters used in fitting at 3 = 5.7,

The paramnete

as inputs the differences between the mass of the

E M, My ’; My, Jx
0.090 0.789 1.11 0.196(9)
0.060 0.659 0.99 0.171(6)
0.030 0.482 0.82 0.142(4)
0.015 0.350 0.71 0.133(4)
0.010 0.289 0.66 0.127(5)
0.005 0.208 .61 0.124(6)

rizations we use Lo fit the correlators (Eq. (6.13)) require
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the w3, 7 and 73. At § = 5.7 flavor symmetry is badly broken, and the non-
Goldstone pions are considerably heavier [22]. This is illustrated by the results
for m, and my, given in Table 2. It turns out that, because of this large
mass difference, the non-Goldstone contribution to the rx -+ =7 correlators is
negligible. Furthermore, the signal is poor in the correlators involving 737, so
we only have results for the 7m — 771 correlators.

In Table 3 we give the results for m, and m,, from the 243 lattices at 8 = 6
[22]. Here the flavor symmetry is less badly broken, and there are reasonable
signals in all the correlators of Eq. (6.13). Within errors, the 73, # and ¥
are degenerate, and, for simplicity, we assume exact degeneracy, taking the r3
mass for all three. We do not include errors in these masses in the following

analysis, as these errors are smaller than the other uncertainties.

TABLE 3. Parameters used in fitting at 3 = 6.

my My My, f:r Rwall(243) Rwall(lﬁs)
0.03 0.417 0.461 0.069(6) 0.83 0.97
0.02 0.338 0.386 0.063(5) 0.76 0.96
0.01 | 0.238 | 0.288 | 0.059(4) 0.84 11

Tables 2 and 3 also include the values for f, extracted in Ref. [22]. (The
results for the larger three masses at § = 5.7 are new.) These are needed to
compare the scaltering amplitudes we extract to the current algebra predictions.

To arrive at the parameterizations of Eq. (6.13) we assume that flavor
symmetry breaking is small in quantities other than the pion masses. In par-
ticular, we assume that the amplitudes for the wall sources to create pions, the
amplitudes [or the operators to destroy the pions, and the scattering amplitudes
from two pions to two other pions are all independent of flavor. This is true
in the continunm limit, bul there are corrections of O(g?) and O(a?). To give
an idea of how large these corrections are we include in Table 3 results for the
following ratio of amplitudes (using the notation of Ref. [22]):

-Awall("r) .

AWaIi(NS) s Awall(ﬂ) = (ﬂ'qu + OOIW), Awall("r_g} = (waqu .; OO'I!V) .

(7.1)

Ryan =
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Here W represents the complicated state that the wall operator acts npon, and
¢ and o are the two types of wall source. This ratio gives the relative strength
of the r and w3 walls. The statistical errors in these amplitudes are ~ 15%, and
within these errors the ratio is consistent with unity. Since the non-Goldstone
contribution is a relatively small correction for the main correlators of interest,
the approximation of assuming equal amplitudes is adequate.

We now turn to our results, beginning with the crossed 77 — 7 correlator,
C(t). This is the correlator with the best signal and the simplest interpretation.
According to Eq. (6.13), it should have a non-zero intercept of F ~ 1/6 and a
linear dependence on ¢, with a slope which should vanish as 1/L%. The slope
should be dominated by the quark exchange amplitude, as the gluon exchange
amplitude is suppressed by the Fierz factor F. The results for Cotagglt) =
C(t)/N; are shown in Figs. 2a-c. The errors on the points are statistical,
determined by single-elimination jackknife. The results are in good agreement
with our expectations. All graphs show an intercept close to 1/6, and a clear
linear behavior. At # = 6, the slope is much greater on the 16 than on the 24°
lattices. There are boundary effects at large times, beginning 8 - 10 timeslices
from the end of the lattice, as is most evident at # = 5.7. For small t, however,
there is Lttle sign of boundary effects, the linear behavior beginning almost
immediately.

In order to extract G and Q, we need to combine the results for C(t) with
those from the direct correlator D(t). This is expected to have an intercept of
Z ~ 1, and a linear termn in which the quark exchange amplitude is suppressed
by F compared to the gluon exchange amplitude. [t turns out that in our
data the contributions of these two amplitudes to the slope are similar. At
B = 6, the analysis is complicated by the presence of the non-Goldstone pion
contribution, i.e. the term proportional to H(t) in Eq. (6.13). (At 8 =57
the non-Goldstone pions are too heavy to contribute.) This introduces a small
curvature in [)t). The results are displayed in Figs. 3a-c, using vertical offsets
to separate the data for different masses. Accounting for these offsets, we see
that the intercepts lie close to the expected value. The errors are larger than

those for C(t), and the linear hehavior is less clean. There is some evidence
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for the expected curvature at £ =6, but the errors are too large for this to be
convincing.

To extract Z, F', (7 and @ we must simultaneously fit C(t) and Dit) to
the forins in Eq. (6.13). To do this we make two simplifications. Firat, we
ignore correlations when doing the fitting, so that we do not have a quantitative
measure of the goodness of fit. ‘Thig simplification is made of necessity, as we
do not have encugh configurations to calculate Lhe full correlation matrix for
the values of € and D to which we fit. ,We can, however, calculate the errors in
the parameters of the fit, using single-elimination jackknife. (There are actually
two measurements on each configuration, one with the wall source at each end,
but we average these together and count them as a single measurement in the
Jjackknife calculations.} The second simplification is to approximate H(t) by a
linear function within our chosen time range. This simplifies fitting, and is a
good approximation.

To apply this method we must choose a time range, fmin — tmay. This must
be done so as to avoid possible contamination from boundary effects and from
t* terms. As is most clear in C(t) at 3 = 5.7 (Fig. 2a}, boundary effects cange
the slope to increase at large ¢. Because of this, as one increases tmax, Lhe slope
increases monotonically, and there is no stable asymptotic result. The same
problem would be caused by t? terms. What we do in practice is to look for
a set of reasonable time ranges for which the results are consistent within the
errors. We consider values for tmin down o 6, and Imax up to 28. To glve an
idea of the sensttivity to time range we give the results from the fits to ¢ = 6—16
and t = 10 -- 20 in Tables 4 and 9. In addition, Figures 2 and 3 show the fits
for £ =6 - 16, and their extensions outside the fitting range.

Table 4 shows that Z and are only sensitive to the time range for the
L = 16 lattice at 8 = 6, although even on this lattjce the changes are of marginal
significance. This lattice has the smallest physical size, so that, at a given pion
mass, the finite volume effects are largest. In particular this means that the
t? terms are largest, so that we expect the greatest sensitivity Lo changes in
the time range. The results show that 627 = Z _ 1 anq oF = F — % are both

small. This confirms the assumption made in the previous section that the
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TABLE 4. Results for 7 and F,

t=6-16 t=10—20
m, z [ F Z G
B =57 16% x 32
0.1675(3) | 1.000(1) 0.167(1)
0.1680(4) 1.000(1) 0.168(1)

0.1694(6) 1.002(1) 0.168(1)

0.090 1.001(1)
0.060 1.002(1)
0.030 1.004(2)

0.015 1.004(1) 0.173(1) 1.002(1) 0.173(1)

0.010 1.005(1) 0.177(1) 1.003(2) 0.177(1)

0.005 1.007(2) 0.186(1) 1.008(2) 0.185(2)
B =16, 16% x 40

0.03 1.004(3) 0.172(4)
0.02 1.014(7) 0.181(3)
0.01 1.026(10) | 0.196(3)

0.983(19) | 0.166(7)
0.990(16) | 0.172(5)
0.994(15) | 0.136(5)

B =6, 247 x 40
0.03 1.004(3) 0-167(1) 1.004(5) 0.167(1)
0.02 1.007(4) 0.168(1) 1.006(6) 0.168(3)
0.01 1.012(6) 0.174(1) 1.010(7) 0.175(2)

Zxx [Z2 i3 close to unity even for wall sources. We also suggested that 62
and §F should be proportional to 1/£2. If 80, we would expect that $Z{L =
16)/6Z(L = 24) = 6F(L = 16)/6F(L = 24) =~ 2. Only §F is statistically
significant, and we do find that §F(L = 16} is larger than SF(L = 24), the
ratio even being consistent with the expected factor of 2, modulo the usual
systematic and statistical uncertainties.

As shown in Table 5, @ and G are more sensitive to the fitting range. We
draw the following conclusions from the results:

l. Forg=571 = 16, the results do not depend on the time range: ) and
G agree for the two fits within errors. @ is well determined, while ¢ is
consistent with zero.

2. The same is true on the large lattice (1 = 24) at B = 6. Indeed, if we
extend the fitting range to ¢ — 10 — 28, we find no significant changes in

the parameters.
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TABLE 5. Results for ¢ and (/.

t=6-16 t=10-20

mg | 1/(1677) @ [ ¢ e | ¢
#=57,16% x 32
0.090 | 1.64(16) 1.7(1) -0.3(2) 1.7(2) -0.6(3)
0.060 | 2.15(16) 2.2(2) -0.2(4) 2.1(3) -0.6(6)

0.030 | 3.1(2) 32(4) | 0.0(5) 35(5) | -0.5(7)

0015 | 3.5(2) 36(3) |-02(4) | 37(3) | -0.6(4)

0.010 | 3.9(3) 39(3) | 0204) | 394) |-0.74)

0005 | 4.1(4) 42(4) | -05(5) | 45(6) | -01(4)
A =6, 165 x 40

003 | 13.1(2.3)
0.02 | 15.8(2.5)
001 | 18:0(2.4)

14.6(1.6) | -10(4)
15.8(1.4) | -7(4)
19.6(1.4) | <7(5)

B =6, 24% x 40
3201.0) | -8(6)
16.1(1.6) | -5(6)
193(22) | -1(7)

16.1(26) | -17(7)
17.6(14) | -15(7)
205(1.4) | -17(7)

003 | 13.1(2.3)
0.02 | 15.8(2.5)
0.01 [ 18.0(2.4)

13.7(1.3) | -8(5)
16.0(1.7) | -6(5)
17.2(2.1) | -4(5)

3. The same is not true on the @ = 6, L = 16 lattices. There is a systematic
increase in ¢ and |G| when going fromt = 6 — 16 to t = 10 — 20. The
results for ¢ = 10 — 28 are larger still. On the other hand, using ¢t = 6 — 12
gives almost the same results for @) as for t = 6 — 16, while for G we find
the smaller results —8(4), —5(3) and —4(5) for my; = 0.03, 0.02 and 0.01
respectively. We conclude that we must use {ya, < 16, and that only the
results for @} are reliable.
Based on this analysis we consider t = 6—16 to be a reliable range for extracting
Q for all three lattices, and we use this range in the following. We cannat,
however, extract (5, althonugh we can roughly bound it.

Before proceeding to the analysis of the results for Q and G, we consider
whether the restriction ¢,ax < 16 on the 8 =6, L = 16 lattices could be due to
t? terms, or whether instead it is due mainly to other effects such as boundary

reflections. The data themselves suggest the latter interpretation, since Figs.
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2b and 3b show more of a kink than a smooth quadratic form. We can make a
crude estimate of Lhe expected size of {2 terms by ignoring Fierz contributions.
Then it follows from Eqgs. (2.6) and (4.4) that

QR 1°Qc

Cstagg(t) = 'EE - FA3 + O(ta) ’
’ (7:2)
G !’.2(G2+N}Q2) 3
D) =1- 3+ ——= 1 0(F) .

The effect of flavor breaking is effectively to reduce the coefficient of 2 so
these equations overestimate the expected effect. Consider first the crossed
amplitude. The leading correction comes from an additional gluon exchange,
and has relative size —1G /L. Since G is negative, the {? term is positive, and
this is consistent with the curvature we find for C(£). The magnitude of the ¢2
term is, however, too small to explain the curvature. To see this, we use the
largest values of |G| which we find, and compare the 1% term predicted by Eq.
(7.2) to the size of the errors in C(#). At # = 5.7, taking —G < 0.5, the ¢*
term is less than 7% of the error for all £. At B = 6, with G = —10, the ¢2
term is about one third of the error for ¢ > 20, for both L = 16 and I, = 24.
Since the deviation from the fit for L = 16 (Fig. 2b) is about the same as the
error for ¢ > 20, this suggests that no more than a third of the curvature can
be explained by ¢? terms.

For the direct amplitude the #? terms are potentially larger because of the
factor of N} multiplying Q2. This enhancement comes from the fact that if
there are two quark exchanges the intermediate pions can have any staggered-
flavor. Since the non-Goldstone pions are heavier, however, this enhancement
factor will be reduced. Indeed for 8 = 5.7 we expect the “effective” N} to be
close to 1, in which case the £2 term turns out to be < 10% of the error in D
for all ¢, and thus negligible. For 4 = 6, the effective Nf will be larger. If we
assume that it is ~ 8, then the ? terms are no larger than one third of the
error in D for L = 24. For L = 16, however, they are similar in magnitude to
the error in D for ¢ > 20. Since the deviations from linearity are similar to the

eIrors, it is possible that the ¢ terms are the dominant source of curvature.
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The final step in the analysis is to extract T, and T;. Recall that

L 1My

g 4TFL +O(1/L2) 1

9, C
G=T,— (T} + I}) T

N1Q =T, - 2T,1

(7.3)

+0(1/L%) ,

so, in principle, we can solve these equations given ¢ and . This is not possible,
however, in practice. The errors on ( are too large, and (as we discuss below)
the convergence of the 1/L expansion for & too poor. Instead, at 3 = 6, we
can plot ) versus m, /L and try and e)étrapolate to L = co. This is to be done
separately for each quark mass. The results from Table 5 (using t = 6 - 16)
are collected in Fig. 4. (Recall that there is no correlation between the errors
at L = 16 and L = 24.) We see that, within the 10% errors, the results at
L =16 and L = 24 are consistent. Thus possible 1/L terms are small; they are
no larger than the errors, and could be considerably smaller. The 1 /L terms
should be smaller still at # = 5.7, for in physical units the lattices are larger.

Further evidence for the small size of 1/L terms comes from comparing
the results to the predictions of chiral perturbation theory. In the chiral limit
we expect T, = 1/4f2 and Ty = 0. Thus, for small quark masses, the infinite
volume extrapolation of @ should yield 1/16 J2. We include the results for this
quantity in Table 5 and in Fig. 4. The chiral prediction works wel] for all three
quark masses.

To illustrate this more clearly, we show in Fig. 5 the quantity N;Qf? =
T, f% + O(1/L) which should equal 1/4 in the simultaneous chiral and infinite
volure limits. We have combined the errors in @ and f2 in quadrature, ignoring
correlations between these quantities. This plot allows us to include the data
from § = 5.7. We plot the dimensionless amplitude against mZ in physical
units. It is striking that all the results are consistent with the chiral prediction,
with no significant evidence for variation with m2. Of course, as Table 5 and
Fig. 4 show, Q itself does vary with m2, but this is largely canceled by the
variation in f2,

We stress that we cannot extract a prediction for the mass dependence of

the [ =2 amplitude Ty =1, + Ty, because we do not have results for T,. This

3

is unfortunate, for it would allow an interesting comparison with the p! terms
the chiral expansion [14]. What we can do is give a rough bound on the relative
contribution of T, assuming that T, & G. For # = 6 we use the results from
the larger lattice. Remembering that Ty &~ N;Q, we see from Table 5 that
T, is no larger than ~ T, /10. Thus, although we cannot quantitatively check
the prediction that T, vanishes in the chiral liuit, our results are qualitatively
consistent with T, being much smaller than 1.

We can use Eqs. (7.3) to check that the 1/L corrections to T, are expected
to be as small as Fig. 4 implies. To do this, we assume 13 = G, and take the
t = 6~ 16 values for G. Since G appears to be negative, and ¢, = —2.84 is also
negative, Ty /Ny is predicted to be larger than Q. For 8 = 5.7 the increase is
tiny: roughly 0.3(0.4)% for all masses, which is much smaller than the errors in
Q. For # =6, L = 24, the increase is larger, 3 — 6%, although still consistent
with zero, and smaller than the errors in Q. Finally, for 8 = 6, L = 186, the
increase is larger still, as large as 12%, although as discussed above, this should
be considered to be an upper bound. Thus the maximum possible size of the
shift is about the size of the error on Q. We conclude that the extraction of T,
is reliable.

If we undertake a similar exercise for T,, however, we find that the 1 /L
term is comparable to or larger than the O(1) term. Thus much larger volumes,
in addition to reduced statistical errors, will be needed in order to extract Ty.
This also underlines the approximate nature of the estimates of the 1/L terms
in Q given in the previous paragraph.

Finally, we turn to the results involving non-Goldstone pion operators. We
use these to check our understanding of the Fierz contributicmé to the Goldstone
pion correlators. To do this we present a series of figures aimed at showing that
Eq. (6.13} gives a reasonable representation of the data. We use the results
with the smallest errors, which are those at m, = 0.03 on the L = 24 lattices at
B = 6. We begin by comparing the #7 — 77 and T3W3 — T3y correlators. The
crossed correlators are shown in Fig. 6a. If the scattering amplitudes for 7 and
73 mesons are the same, as is true in the continuum limit, then the correlators

should be the same. We find agreeruent at intermediate times where the my
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correlator i3 not contaminated by boundary effects. ‘This agreement todicates
that staggered-flavor symmetry breaking is small.

The direct correlators are compared in Fig. 6b. Equation {6.13) predicts

bp = D(t : mamg — mamg) — D(t - am — wr) = F(20 + H'(1) - 3HNQ/L .
(7.4)
Since H(t) = H'(t) + O(t?) = t + O(t?), the difference between the correlators
should vanish at small ¢. This is also true in the limit that ém, — 0. As ¢
increases, H’ curves upwards, while H curves downwards, so that ép should be
positive and increasing. The figure shows that these features are qualitatively
correct. The solid line shows the prediciion from Eq. (6.13) for the mamy —
mams correlator, using the parameters obtained from the ¢ = 6 — 16 fit to
the 77 — w7 correlators. We stress that a global fit to all correlators would
considerably improve the agreement, particularly if we allowed for some flavor
symmetry breaking in the scattering, creation and annihilation amplitudes. The
point we want to make is that the prediction is qualitatively correct, and in
particular it matches the curvature of the data. The presence of this curvature
is confirmation of the arguments leading to the functions [ (t) and H'(t).
A more direct confirmation is provided by the crossed r3r3 — 7x correla-

tor. Eq. (6.13) predicts that
bc = C(t: mamg —> 7w) — C(t - 7w — wn) = Z(H(1) - )Q/L? (7.5)

i.e. that the dominant linear term in the w7 — wr correlator is replaced by the
same term with H{t) instead of . Thus the curvature of H(t} should be clear,
and Fig. 7a confirms this expectation. The two correlators agree at small ¢ and
then diverge. The solid line gives the prediction of Eq. (6.13), which in this
case works remarkably well.

The prediction for the direct m3ma — 77 correlator also works very well,
as shown in Fig. 7b. Here what is being tested is that the signs from Fierz
transforming and from the interaction vertex are correct. The prediction is that
D o (t — H(1)), and the cancellation between ¢ and H(t) is evident from the
figure.
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Finally we show in Figs. 8 the results for the ar — m3my correlators,
together with our predictions. The dominant new feature of the crossed graph
is the exponential decay in the Fierz term. This is well represented by our data,
shown in Fig. 8a. The prediction does less well for the direct graph (¥ig. 8b),

although the general shape and magnitude is reasonably well reproduced.

8. Conclusions

We have shown that it is possible to do a reasonable job of extracting
the 7 = 2 wxn scattering length from finite volume effects in lattice QCD. The
dominant contribution to the amplitude, that due to “quark exchange”, can be
extracted reliably, while the subdominant “gluon exchange” amplitude cannot.
The results are in good agreement with constraints of chiral symmetry. As a
matter of principle this is not surprising, since in the staggered formalism one
can derive Weinberg's and related formulae directly on the lattice. Still it is en-
couraging to find that with currently accessible statistics and parameter ranges,
we can really claim to understand finite volume effects at the quantitative level.

Many of the technicalities encountered here are a result of the use of stag-
gered fermions and of interpolating operators which create pions on the same
timeslice. It would be interesting to simplify the analysis by repeating the cal-
culation with separated pion sources, so that Fierz terms are absent. This could
be done by using sources on different timeslices, or spatially separated sources
on the same timeslice. Likewise it would be interesting to go through the same
analysis with Wilson fermions, and such work is in progress [24].

Finally we note that in principleone could go ahead and calculate the I = 0
scattering length in the same way, even using the quenched approximation.
Dynamical quark loops are essential to obtain the terms of O(4?) correctly, but
one can use the term linear in £ to extract the scattering amplitudes, as we have
done here. Even so, the prospect is daunting, since such a calculation would
involve calculating the statistically demanding single and double annihilation

graphs.
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Appendix A. Discussion of Liischer’s formunla

Calculations of scattering amplitudes using staggered fermions face various
difficulties. To overcome these it is useful to have a clear understanding of the

source of the various terms in Lischer’s formula Eq. (2.2):

. T my T m,T\> g
6L_ﬁ(1C1M‘N_+62(4’NL))+O(L ) (Al)

In this appendix we give a heuristic surnmary of Liischer’s analysis (1. We
use non-relativistic Quantum Mechanics (NRQM) to present the arguments,
for Luscher has shown how to take results from NRQM over to field theory.
Let the Hamiltonian Hg describe non-relativistic non-interacting pions. We
are interested in states containing two pions, which we label by their relative
momentum: 2
Holp) = 2 x 3—|F) = E,I5) . (A.2)
The states are normalized to unity in a box of lengih L. With periodic boundary
conditions only momenta with p; = 2an;/L are allowed. We add a perturbing
potential V, which depends only on the relative coordinate of the two pions,
and has finite range. This shifts the energies of the states, and we are interested

in this shift for the lightest two pion state, |0). In perturbation theory this is

> OWVIBHBIVIENTIVIO)

E = (@|v(0) - Z———I(ﬁ'?ﬁm +

F#0 ? FA0 EvnE,
§#0 (A.3)
0 =\ 12
F0 r

This is the NRQM equivalent of the £ we calculate in field theory.
Our aim is to use 6F to extract the infinite volume scattering amplitude.
The Born series for the non-relativistically normalized amplitude at threshold

15

~ (GVIGY i|0|v_|p“ o [ [P | o,
(A1)

36



where [ = [d°p/(2r)*, and the states in this expression have continuum
normalization {(i/]¢)} = (27)38(§ — F). For the amplitude at threshold, the
mtegrals are infrared convergent and we can set ¢ = 0. Thus T is real.

To compare T with 8E we must account for the different normnalizations,
{717y = L*(P|g). We also need to relate momentum sums and integrals. This
is hughly non-trivial because of the infrared singularities in the integrands, i.e.
the factors of 1/E,. Were it not for these singularities, one would have the
simple relation f, = 37 /L® It turns out that one can use this relation to
determine the leading behavior in an expansion in powers of 1/L [1]. Doing so,
we see that the first three terms in 6E are equal to those in T/L2, while the
fourth term in 8% is suppressed by a factor of 1/L3. This pattern remains true
to all orders in the potential V: all terms in 7/L3 have corresponding terms
in 6, while “extra” terms in 6E are suppressed by powers of 1/L. Thus, at
leading order in 1/L, the energy shift is related to the scattering amplitude by
6E = T/L®. The factor of 1/L® can be understood physically. The two pions
only interact when they overlap, for which the phase space is proportional to
/L3

To calculate the difference 8F — T//L? we need to evaluate the difference
between the sums in 6E and integrals in T, and the “extra” terms in 6E. We
discuss these in turn.

1. Momentum sums vs. integrals. Consider the difference between the terms of
O(V?) in ¢E and T/L3. If 1/E, = m/p? were replaced by a smooth function
whose derivatives were integrable at j = 0, then the difference would be zero
(Eq. 2.42 of Ref. [1]). Thus the difference is dominated by the region around
P = 0. A rough estimate is obtained from the part of the integral corresponding
to the point excised from the sum, i.e. the point at 5= 0. Naively, this gives a
term in the difference of O(1/L%), but the infrared divergence in the integrand

raises the power to 1/L*
3

T 1 ~/E |01V P /3,14
61’"?"‘ LaH([_ dp;)T+0(l /LY

/L
N 81r m/

o @I + ow“/rﬁ) .

OiVIO))l2 (A.5)

+O0(V3/LY
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Liischer’s analysis gives the coelficient of proportionality to be e, /1a witl
c1 the known constant. given in the text. This is the first terin in the exXpansion
of the T2/L* term in Eq. (A.1) in powers of V.

At O(V?)}, we must consider the difference between the double sum in (A3)
and the double integral in (A.4). The contribution to this difference from the
region where either 7 or ¢ is close to zero is again of O(1/L%). It comes with
the correct coefficient to contribute the ((V3) term in the T2/L* term in Eq.
(A.1). Liischer shows this result to be true to all orders in V

T m,T? 1

B~ o5 = —e1 g + O3

L3 4x L4 ). (A-6)

It appears remarkable that the terms of different orders in V add up to give
the series for T2, but this can be understood on general grounds [2].

The difference between the O(V3) sum and integral also gives a term pro-
portional to V3/L%, from the region in which both momenta are close to zero.
This is one of the leading order contributions to the term proportional to T3 /LS
in Eq. (A.1).

2. “Extra” terms in éE. The remainder of the V3/L5 terms come from the
the fourth term in 8K, which has no counterpart in 7. Though naively of
O(1/L"), the infra-red divergence 2_1/E} raises the leading power to 1/L°.
Liischer shows that, to all orders in V, the O(1/L%) terms combine to give
eaTm?2 /(1672 L%) + O(1/L®).

It is helpful to extend this analysis to matrix elements of the Euclidean
evolution operator, for these are the quantities we actually calculate. The
analog of the ratio R(t) in NRQM is

(Ble=tHo+v 15)

G - O N0 =z (A

R(t) =

where in the second equality we have used the fact that £y = 0. The ellipsis
represents the contributions of higher states, and Zg is the absolute square of

the overlap between the truc lightest state and [(). In field theory Z;, becomes
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the Z.«/Z7 of Eq. (2.6). Expanding the evolution operator in perturbation
theory

'
otz et [Lapemt Oy e
0

t t'
+/ dt’/ dtue—Hu(i—x')Ve—Ho('t'—t”)Ve—Hot“+___ .
0 u
(A.8)

we have

R(t):l—t(5|V|6)+/O dt’fu dt" Y (@I BN G iy + .
i (A.9)

Separating out the state with § = 0 in the second term, and doing the integrals,

gives

- - - o 6 Vg 2 —-E,t —1
R() = 1= 1@ VI0) + 162G |v(6)2 + 3 LIV 1P (t+‘* ‘ )+
2 L. E E,
F#0
B DI@EVIRE

= Lt — 1By + besmn)t+ 3L o
P

F£0

(A.10)
llere we are using the notation that 8E; is the contribution to 6£ of O(V¥) (see
Eq. (A.3)).

We can interpret this result in the following way. As the expansion Eq.
(A.8) shows, the two pions propagate freely except for interactions due to V.
The factor of 1 on the right hand side of Eq. (A.10) corresponds to the plons
propagating without interaction. The —téE; term corresponds to a single inter-
action; there is a factor of ¢ since the interaction can happen at any intermediate
time.” If there are two interactions, the interpretation depends on whether the
intermediate stale is “on-shell” (i.e. |0)) or “off:shell”. In the former case,
the pions are propagating freely except for two interactions, which leads to the

factor ;—tﬂ multiplying 6£2. This clearly extends to higher orders; n scatterings

7 The minus sign is an artifact of the non-relativistic definition of T Using

Tye the sign 1s positive, as expected intuitively.
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with all intermediate states being on-shell leads to (—ék,t)* /u!, which builds
up an exponential series.

We now return to the O(V?*) terms with off-shell intermediate states. These
give rise to —téF, in the following way. Since the intermediate states are off-
shell, the two interactions are close in time, and can be thought of as a single
interaction, of finite time extent, and of strength 6£5. This composite interac-
tion can occur at any time, leading to the factor of £, The same picture applies
for terms of higher order in V in which all intermediate states are off-shell.
These add up to a composite interaction of strength 6E + O(1/L%), the 1/L5
deviation appearing because the “extra” terms in 6E are not produced. Thus
the term linear in ¢ is —2(8F + O(1/L®)). Since 6E = T/L? + O(1/ L*), we can
think of the ¢ term as coming from two pions propagating freely except for a
single all-orders scattering which can occur at any time, the 1/L? being the
overlap factor.

Similarly, higher order terms convert §E7t2/2 into 8£2%/2 plus corrections
suppressed by powers of 1/L. This can be thought of as due to two all-orders
scatterings. The ¢ and {? terms are themselves building up the exponential
exp(—6Et) which is the dominant part of R at large times.

The corrections to this interpretation come from edge effects. For example,
the off-shell O(V'?) term does not give precisely —t8F5, because the finite time
extent of the interaction is not properly accounted for at the beginning and
ending times. The difference is the last term in Eq. (A.10). This has two com-
ponents: a term falling exponentially and a constant. The former comes from
mixing with more energetic eigenstates of [{o + V and is unimportant at large
times. The latter gives the first term in the difference between exp —t6E and the
correct expression Zy, exp —{8F (Eq. (A.7)). Z differs slightly from unity, and
indeed the constant part of the final term in Eq. (A.10) is the standard NRQM
expression for Z —1. It is important to note that, although Z; —1 is naively of
O(1/L?), the infrared divergence alters the behavior to O(1/L?). This is true
to all orders in V. Thus, if one were to ignore wavefunction renormalization,
and use the coeflicient of term linear in t in Eq. (A.10) to determine 8K, one

would be making an fractional error of Q(1/L%). But since §F o 1/L3, this
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corresponds to an absolute error proportional to 1/L%. We use this result in
the text.

Higher orders in V give rise to further terms in exp{—t&F), and to higher
order wave function renormalizations. For the discussion of staggered-flavor
symmelry breaking in section 5, we need to know the effect of contributions in
which one or more of the intermediate states is on-shell. It is straightforward to
see that these contribute to (i) terms quadratic or higher order in t; (ii) terms
linear in ¢ which are part of (1 — Z.)éEt, and thus proportional to t/L%; and
(i) constant terms in (1 — Z; ) which are thus of O(1/L?).

Appendix B. Staggered fermion Ward identities

In this appendix we use lattice chiral Ward identities to derive expressions
for the amplitudes T, and T, (Eq. (4.4)) close to the chiral limit. These results
agree with Weinberg's continuum predictions, which we discuss in section 4.
We also can make predictions for the form in configuration space of a two pion
correlator similar to that we actually study.

We begin with T}, which is defined to be the scattering amplitude obtained
from the average of the crossed diagram of Fig. 1b with the diagram in which
the arrows are reversed. 'This averaging is equivalent to taking the real part
of Fig. 1b alone. Our discussion uses the notation and methods of Ref. [11].
We work in infinite volume, with n; = (1, ;) labeling the Euclidean position
of the 7’th pion, and assume that we are close to the continuum limit so that
we can approximate 2sin{(p,/2) by p,, etc. Using translation invariance to fix

ng = (0, 0), the crossed diagram correlator is

Cax(n1,nz,n3) = —(= 1217 (Re [¥, x3(1)% Xa(72) X X e (13)Xaxa (0)])
(B.1)
where the expectation value indicates the full functional integral over gluon and
quark fields. The sole purpose of the fake flavor indices a — d is to restrict the
Wick contractions to those of Fig. 1b. The pion interpolating field is chosen to

be local since this form is convenient to derive Ward identities. The minus sign

4]

in Eq. (B.1) is designed to cancel the sign from Fermi statistics so that upon

integrating out the fermions we have

Cax{ni,ny,n3) = (—1)"’+"’+"3(RETP[G(0;HI}G(ﬂl;ﬂ3)G(n3;ﬂ2)G(ﬂ2;0)]) |

(B.2)
which is similar to, and has the same sign as, the correlator Catagg that we
actually calculate. The expectation value now indicates an integral over only
gauge fields, with G the quark propagator in this background field.

Various symmetries of Cy, will be important in the following. These are
symmetry under (i) (1 — 2) exchange: Cax(ny,n2,n3) = Cyx(nz, ny, n3); (ii)
(3 & 4) exchange; and (iii) (12 — 34) exchange. These can be seen using
G(n.-;n‘,-)f = (=)™ G(ny;ng).

We wish to extract the scattering amplitude from the correlator. To do

this it is convenient to work in momentum space

Cax(p1,p2,p3) = Z expli(p1 - n1 + p2-n2 4 p3 - n3)] Cyxlny, na, n3) . (B.3)

n,nyns

Here p; is the momentum flowing into the i’th pion, and ps = —(p1 + p2 + pa).
2

T

To extract the amplitude we must analytically continue to the polesat p? =m

First we must define the renormalization constant Zx:

Cx(p1) = ?exp(ipl -11)Cx(ny) = 5¥+—rm§ + regular , (B.4)
where
Cr(m) = (=1)"(Tr [G(0; n1)G(ny; 0))) . (B.5)

Using this we write :

4
Cuntpr.pa9) = T (5525 ) A (B.6)

APl +m?

for then, using the reduction theorem, A4y is the scattering amplitude when we
go on-shell. In fact, because of the sign in the definition (B.1), and because of
the staggered fermion flavor factor discussed in section 5, this amplitude must

be multiplied by - N, to be compared with the continuum scattering amplitude.
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We can go on-shell in three ways, and thus obtain from Agr the 142 — 344
(s-channel), 143 — 244 (t-channel), and | +4 — 24 3 (u-channel) scattering
amplitudes. In the s-channel the scattering lakes place by quark exchange, but
for t- and u-channels the scattering is by single-annihilation. We now make the
crucial assumption, namely that 4,4, depends smoothly on the momenta and

the squared pion Imass, 5o that we can write

Az = a+fm? +7{p? +p§+P§+P§)+ 168[(m +P2)2+(P3+P4)2]+- -~ (B.7)
I

where a, 8 v and 6 are constants. The ellipsis represent terms higher order
in momenta and masses, including the non-analytic terms anising from pion
loops, which we ignore. Invariance under discrete lattice rotations ensures the
absence of terms linear in pi and that the O(p?) terms appear as four-vector
inner products. The symmetries under (1 «~ 2), 3 & 4) and (12 - 34)
exchanges also restrict the O(p?) terms. In sum, through O(p?) we end up with
the same expression one would find in the continuum

If we can determine the constants in Eq. (B.7), then we can find a rela-
tionship between the three physical scattering amplitudes which are contained
i Agr. We return to the precise form of this relationship below.

To fix the constants we begin with a lattice version of Adler’s theorem. For

P3 =0, with the other particles on-shell,® the relevant Ward identity is

1
2041'(111 y g, ﬂ3) = E_— (Ct(l‘(n].:ﬂ?) + Crnr(nm nl)) ) (BS)
na my
which relates the pion four-point function to a pion-pion-scalar three point
function
Crexn(ni, ny) = (—1)"*(Re Tr [G(0; n)G(ny; n2)G(n2; 0))) . (B.9)

In momentum space this corresponds to

1
Can(pr,p2, p3=0) = o (Crex(p1, p2) + Crex(p2.p1)) . (B.10)
q

* This is possible with imaginary momenta, e.g. (with i=./-T)
o= %hu,(l,vﬁ}o,uhgw = %hnx(l.—vﬁiﬂ,ﬂllu =P - pe
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The absence of the factor (=1)"2 in Eq. (B.9) implies that the interpolating
operator at n; is ascalar, so that Crex{p1, p2) does not have a pole at p? = —m?
‘Thus both terms on the right hand side of Eq. (B.10) are lacking one of the
poles of the lefi hand side. Multiplying by (P} + m? Hpi + mz)(pg + m?) and
going to the poles, yields

2

APl =pi=pi=-m? ps=0)= ¢ . {(B.11)

Inserting the parameterization (B.7) into this result, and noting that (p1 +

)t = ~m?, gives the condition
a+(B-3y-86m? =0 . (B.12)
This must hold for all (sufficiently small) values of m2, so we deduce that
a=1 and B =3vy44. (B.13)

The same result follows from setting any of the other momenta to Zero,

The second constraint comes from setting p, = P2 = 0. The Ward identity
18
3 s, nz,mg) = -2%3 (Calns) + Clns)) | (B.14)

ny,n;

where the pion correlator ig defined in Eq. (B.5), and the scalar correlator is
Ce(ns) = (Tr [G(0;n3)G(n3;0))) . (B.15)

Fourier transforming Eq. ( B.14), and comparing the coefficients of the poles at

pi=pl= ~m2, to which the scalar correlator does nat contribute, we find

2

. A .

J—— 2 2 vy x 2 2
mi(p? + m2)2 (a+ fm; +29p2 + O@(*) = W(l +0(p5 + m?)) .
(B.16)

'To cancel the double pole on the left hand side fequires

a = {} and g =2, (B3.17)
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while to match the coefficient of the single pole we must have

m] 1
g= 2"!:;2; =N (B.18)
The second equality in this equation follows from the result [11]
Zn _ Jamy (B.19)
2N, 2m,
Combining Eqs. (B.13) and (B.17) we obtain the final relation
b= —y = Hg— . {B.20)

An interesting check on these results is obtained by setting p; = pa = 0,
so that

4 2
.= 2 (2 2 _Mx 2 p—’f). B.21
Ave = B+ (2 4 8)5f = 5 (4 (B.21)

[n momentum spacc the Ward identity is
1 dC,
Car(0,p2,0) = — am? (C (p2) + Ce(p2) + Jgg)) : (B.22)

As before, the left hand side has a double pole, but here it is not canceled by
the numerator of Eq. (B.21). Instead, the right hand side has a double pole
from the derivative of the pion propagator. Inserting the relations (B.17) and
(B.20) one finds that the coefficients of single and double poles match.

Using the results for the coefficients, we can rewrite the amplitude as

2m2 — ¢t —
.= idle So 1 , .2
Aq 2N, 2 + O(m} In(m?)) (B.23)
where, as usual, t = —(p; + p3)? and u = ~(p1 + ps)?. From this we can

extract the scattering length and effective range for both the quark-exchange
and anmhilation amplitudes. To do this we must multiply by the factor —Ny
as noted above. The relativistically normalized quark-exchange amplitude at
threshold is then

2

T = Ny A(t=u=0)= -5

* 4+ O(m? In(m?)) . (B.24)

45

In fact, since the direct diagram vanishes at leading order in m? | as discussed
below, this is also the result for T'(S)!. To convert this Lo the non-relativistically
normalized amplitude 7}, we use

_TR

Te = 4":;, 4},2 + O(m? In(m?)) . (B.25)

This is the main result of the appendix. The important point is that it agrees
with the Weinberg’s continuum result. The derivation does not depend on the
lattice spacing, nor on whether the quenched approximation is used.

It is instructive to compare the lattice off-shell amplitude with that from
the chiral Lagrangian. Using a four-flavor Lagrangian (Eq. (4.2)), choosing
pion flavors appropriately (Eq. (3.3)), and dividing by —N;, we find

cont 24242, 2, 2
_ 1:’; - _Nflfg (H?'“ m, + pj +§2+P3 +P4) + O(m? In(m2)) .
(B.26)
This differs from the lattice result Eq. (B.23): the t + u terms agree, but the
m?2 terms do not. If we go on-shell, however, i.e. p? = —m2, then the two
results agree. The off-shell amplitudes can disagree because the iwo methods
use different interpolating fields for the pions.
We note in passing that we can extract the single-annihilation amplitude

at threshold (Fig. 1c) from Eq. (B.23):

TR = —NyAse(t=4m? u=0) = + O(m? In{m?)) (B.27)

f2

ie. TR

aun = —T3* at leading order.

Having determined the correlator to leading order in m? we can study it in
configuration space. This is interesting because we can construct a correlator
similar to the quantity C{r) which we actually calculate. There is a small
shght of hand involved, however, since the results derived above were in infinjte
volume. We simply assume that Eqs. (B.6) and (B.23) are valid in large
volumes. To construct our look-alike of C(r) we first Fourier transform back

to Euclidean time, keeping the spatial momenta equal to zero

Caalr,m2,m) = Y Caxl(iy. 1), (72, 72), (713, 73)) - (B.28)
iy, g,
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We next place the first two plons on one timeslice, 1, = T2 = 7, and put the
third on the same timeslice as the fourth, ry = 0. A straightforward caiculation
using Eqgs. (B.6) and (B.23) yields, for 7 > ¢
22

—2m,
WT& T (B?g)

NyCax(r, 1, 0) =
The correlator in Eq. (B.29) differs from that we actually calculate (Eq. (2.3))
In two respects. First, we use wall sources rather than point sources at 7 =
0. This skould be unimportant if we .take the ratio of Cy, to the product of
the appropriate two pion propagators, in which the source amplitudes cancel,
Overlap terms, which will be source dependent, are suppressed by 1/L?, as
discussed in appendix A Thus at large r we expect the correlator C(7) which

we calculate to be well described by

NIC4,(r,r,0)_ T _TTq
L3C.(r)2  ~ 4f213 — [3 -

(B.30)

Here Cy(7) = 22 Cx(1,7) (see Eq. (B.5)), and the factor of 1.3 arises because
73 is summed over.

Eq. (B.30} is exactly the form we expect for C(r) if we keep only terms
of O(1/L?) (see Eq. (6.6)). The absence of wave function renormalization
terms (e.g. constants of O(1/L?)) is due to our approximate treatment of finjte
volume effects.

For very large 7 the correlator C(r) rnust fall exponentially, which appears
to contradict the resylt (B.30). There is no inconsistency, however, because the
terms of quadratic and higher order in r which build up the exponential result
from multiple scattering. They are thus suppiessed by powers of m2, and are
not included in our analysis. To see them we would have to do an honest finite
volume calculation.

Finally, we discuss the Ward identities for the gluon exchange diagram
and their consequences for T,. The notation is simplified if we consider the
double-annihilation diagram Fig. 14, for then the symmetries are the same as

for the crossed diagram considered above. We can obtain the gluon exchange
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amplitude of Fig. 1a by a suitable choice of Mmomenta. In place of kq. (B.2) we

have

Cix{n1, na, n3) = (=1 Hmet0s Yy (Gla, n2)G(ng; ng)] Tr [G(ns; 0)G(0; ny)))

(B.31)
We follow the same steps that lead from Egs. (B.2) 1o (B.7), with Eqs. (B.8)
and (B.9) replaced by

Ecix(ﬂl,ﬂzaﬂs) =
na

g I G ) s ] (G050 - (THIG(0; 01
(B.32)
Since the operator at the origin is a scalar, there is no pole at p3 = —mZ. This
has two consequences. First, just as before this implies the relations (B-13).
Second, using these relations in {B.5) and (B.7) gives

Z: Y g
Cax(Pr,p2.p3=0) = Zx O T v -
(P12, p2=0) m? ((pf +m2)(pl tm2) T (P2 +m2)(p? + m2)
+4é
t TR )
(P1 + m2)(pI + m?)
(B.33)
so that ¥ = 0 is required to rfemove the pole in p,.
Next we set p; = 0 so0 that P2 = —ps, we find
22 1)
. :0’ ) :0 = —-L—-—.___
el =0ppe=0) =
1 - y
= w2 2 X2 - n3)(Tr[G(na; ny)] (Th[G(0; 0) = {Tx{G(0; 0)}))) .
q na
(B.34)
The term on the right hand side does not have a pole at P2 = —m?, since the

operator is a scalar, which implies that § = ¢,

In summary, we find o - B =9=§= 0, so that that the double
anaihilation amplitude and the gluon exchange amplitude vanish at O M).
‘This implies that

Ty = O(m} n(mn?)) | (B.35)

In agreement with the results from the chiral Lagrangian.
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Appendix C. Transfer matrix interpretation of (1)

To calculate the scattering amplitude T, or more genetally to calculate the
amnplitude for the S representation in an SU(N > 4) flavor theory, we use the
quantity Ra(t) = Duagg(f) — NyCotagg(f) (Eqs. (3.1) and (5.1)). As explained
in section 5, the diagrams that contribute to R, become, in the continuum
limit, the same diagrams as those in the calculation of T in QCD, or T(S)
in an SU(N) theory. Thus, in the continuum limit, the exponential fall-off of
Ro(£) at large times gives 6, from which (using Eq. (2.2)} one can extract
T'. While this diagrammatic argument is reasonable, it is not a proof, for the
diagrams that one draws for QCD are purely formal objects. This appendix
aims to bolster the diagrammatic argument by showing how, for the particular
case of a theory with SU(4Ny) symmetry, one can indeed extract T(S) from
the exponential fall-off of R3(t). We are restricted to 4N 1 flavors because this
18 the number required to define correlators which pick out Daragg and Cipagg,
and to have a well defined transfer matrix we must also have 4N t dynamical
quarks.

First consider the direct diagram, Fig la. D{f) can be obtained from the
correlator (OGOI) of the operator

O, = Tr(Uy5 DT} Tr(SvsCTs) . (C.1)

Ouly the flavor dependence is shown, the position dependence being as in Eq.
(2.3).

To determine which scattering amplitude we can extract from (0001), we
need to know which representations of SU{4 N, ) are contained in the symmetric
two pion state. As discussed in Section 3, the decomposition is into a singlet,
an adjoint, and the S and A representations. We wish to calculate T(8S), the
scattering amplitude for the S representation. To exhibit the flavor content of
4, it is useful to show the four staggered flavors explicitly. Labeling these 1-4,

choosing a diagonal ys, and adopting the notation 4;ys5d; = (uid;), we have

Oa = (w1dy + uzdy — uady — uqdy) (s1c1 + s2¢3 — saca — s4¢4) . (C.2)
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Each of the sixteen terms in this product couples to an S5+ A combination. ¥For

example

(uldl)(slcl) + (sla'lj(ulc]) + (uldl)(slci) - (sldl)(ulc[) -

(urdy)(s101) = 2

(C.3)
The first term on the right hand side is part of an S representation since it is
symmetric under quark exchange and all four Aavors are different. Similarly,
the second term is contained in an A.

Now, as discussed in section 4, the pion interaction is attractive in the A
representation, but repulsive in the S, as long as one is close to the chiral limit.
Thus the A components will dominate at large Euclidean time, so that the
{7, (’) ) alone is not useful for the purpose of studying T(S).

For this we add in the crossed diagram, Fig. 1b. We can obtain =Ny Chragg
from the correlator (OGOI), in which

Oy = Ny To(Svs DTs) (T 45 CTy) -

= Ny(s1dy + sady — sads — sqda) (uy0) + ugcy — uges — uy4cq) . (1)

Oy also couples to sixteen S and sixteen A representations. Many of these
representations do not, however, appear in O, (Eq. {(C.2)). The four represen-
tations in common are those in which the quarks and antiquarks all have the
same gtaggered-flavor index. Expressing these in terms of S and A we have, for

example
(urdi)(s1c1) + (811 )(u16y) _ (widi)(s1e1) — (s1dy)(uyeq) _

2
(C.5)
Thus (O,,OI) is also dominated by the A components at long times, but, com-

(s1d1)(u1er) =

pared to (OGOI), they come in with bpposite sign. Furthermore, although there
are only 4 propagating components, compared to 16 in {¢, (')I ), each is multi-
plied by the overall factor of N;. Thus the total A contribution to (U Oi)

exactly opposite to that in {0, 01) This means that the A component cancels
in the sum of the two correlators, leaving the S component we wish to find.
If we w1sh we ca.n also pick out the A component by taking the difference of
{O4 0[:) {00 ) (corresponding to [) + Ny Ciiagg). Clearly, the factor of Ny

in Eq. (5.1} is necessary to obtain these cancellations.
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Fig 1:

Fig. 2:

Fig. 3:

Fig 4

Fig. 5:

Fig. 6:

Fig_ 8:

Figure Captions

Diagrams contributing to two pion correlation functions: (a) “direct™ or “gluon
exchange”; (b} “crossed” or “quark exchange™; (c) “single annihilation™: and (d)
“double annihilation”. The lines represent quark and anti-quark propagstors in
a background gluon field.

The #1 — xx crossed correlator Cuygg(t) = C(t)/ Ny, on the three seta of Iattices:
{a) B = 5.7, 16" » 32, (b) # = 6, 167 x 40 {with some paints at m, = 0.02 removed
for clarity); (c) # = 6, 24* x 40. The lines show the fits to the expected form,
Eq. 6.13. The solid part of the line shows the region to which fitting was actually
done, t =6 — 16.

The rx — x« direct correlator D{#), with notation asin Fig. 2. For clarity, points
from the lightest two masses are vertically offset. The offset values of unity are
indicated by the short horizontal lines. The lines show the fitted function (Eq.
6.13), including the curvature caused by H({t), even though the fit in actually
made to the linear approximation to this function in the fit range. In (¢) some of
the errors are excluded for clarity.

Valume dependence of Q at § = 6. The values at m,/L = 0 (some offset
horizontally for clarity) are the intercepts expected in the chiral limit: Q(L =
oc) = 1/{16f2).

Testing the chiral prediction for the scattering amplitude. Resulta for NpQf3 =
T, f2 + O{1/L). The expected chiral limit is 1/4.

Comparing 737y — 7373 lo 711 — ax correlators at § = 6, L = 24, my, = 0.03:
(B) Cyragglt); (b) D(t), with the solid line showing the expected result {(not a fit)
for the myr; — w37, correlator using Eq. 6.13.

The myry — xx correlators at # = 6, L = 24, m, = 0.03, together with pre.
dictions from Eq. 6.13- {a) Coraggl?). compared to the xx — xx correlator; (b)
Di1).

The ma — x3m; correlators at § = 8, L = 24, m, = 0.03, together with predic-
tions from Eq. 6.13: (n) (gt (b) Dit).

(0}

(b)

{c)

(d)

2R

4

Figure 1. Diagrams contributing to two pion correlation functions: (a) “direct” or “gluon
exchange™; (b) “crossed™ or “quark exchange™; {c) “single annihilation™: and (d) “double
annihilation”. The lines represent quark and anti-quark propagators in » background gluon
field.
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Figure Ja. Results for the 7x — xx direct correlator I)#) on the 3 = 5.7, 16* ¥ 32 lattices.
For clarity, points from the lightest two maases are vertically offset. The offact values of
unity are indicated by the short horizontal lines. The lines show the fitted function (Eq.
6.13), including the curvature caused by H(¢}, even though the fit is actually made to the
linear approximation to this function in the fit range.
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